×

 

Suggest this Article to:

TOP INDEXERS
×

 

Suggest this Article to:

TOP ACADEMIC SEARCH ENGINES
×

 

Suggest this Article to:

TO 84 SEARCH ENGINES
  1. Google
  2. Bing
  3. Gigablast Search Index
  4. Scrubtheweb Directory
  5. Million Short
  6. Free Web Submission
  7. whatUseek
  8. Exact Seek
  9. Library of Congress
  10. Archives Hub
  11. National Archives
  12. arXiv e-Print Archive
  13. Archivenet
  14. NASA Historical Archive
  15. National Agricultural Library
  16. Smithsonian Institution Research Information System
  17. The British Library Catalogues & Collections
  18. CIA World Factbook
  19. State Legislative Websites Directory
  20. OpenDOAR
  21. Catalog of U.S. Government Publications
  22. Library of Congress
  23. Archives Hub
  24. National Archives
  25. arXiv e-Print Archive
  26. Archivenet
  27. NASA Historical Archive
  28. National Agricultural Library
  29. Smithsonian Institution Research Information System
  30. The British Library Catalogues & Collections
  31. CIA World Factbook
  32. State Legislative Websites Directory
  33. OpenDOAR
  34. Catalog of U.S. Government Publications
  35. Library of Congress
  36. Archives Hub
  37. National Archives
  38. arXiv e-Print Archive
  39. Archivenet
  40. NASA Historical Archive
  41. National Agricultural Library
  42. Smithsonian Institution Research Information System
  43. The British Library Catalogues & Collections
  44. CIA World Factbook
  45. State Legislative Websites Directory
  46. OpenDOAR
  47. Catalog of U.S. Government Publications
  48. Library of Congress
  49. Archives Hub
  50. National Archives
  51. arXiv e-Print Archive
  52. Archivenet
  53. NASA Historical Archive
  54. National Agricultural Library
  55. Smithsonian Institution Research Information System
  56. The British Library Catalogues & Collections
  57. CIA World Factbook
  58. State Legislative Websites Directory
  59. OpenDOAR
  60. Catalog of U.S. Government Publications
  61. Library of Congress
  62. Archives Hub
  63. National Archives
  64. arXiv e-Print Archive
  65. Archivenet
  66. NASA Historical Archive
  67. National Agricultural Library
  68. Smithsonian Institution Research Information System
  69. The British Library Catalogues & Collections
  70. CIA World Factbook
  71. State Legislative Websites Directory
  72. OpenDOAR
  73. Catalog of U.S. Government Publications
  74. CIA World Factbook
  75. State Legislative Websites Directory
  76. OpenDOAR
  77. Catalog of U.S. Government Publications
  78. Catalog of U.S. Government Publications


Public Article
  • verified
     

    Prediction of user throughput in the mobile network along the motorway and trunk road

     
     
         
    ISSN: 2744 - 2527

    Publisher: author   

Prediction of user throughput in the mobile network along the motorway and trunk road
Indexed in Technology and Engineering
ARTICLE-FACTOR
 1.3
Article Basics Score: 2
Article Transparency Score: 3
Article Operation Score: 2
Article Articles Score: 2
Article Accessibility Score: 2
Article Problems
Under Evaluation
article Flaws Reduces Credit

SUBMIT PAPER ASK QUESTION
International Category Code (ICC):
ICC-1802
Publisher: "ims" Vogosca
Authors: Zoran Ćurguz, Milorad Banjanin, Mirko Stojčić
International Journal Address (IAA):
IAA.ZONE/2744395682527
eISSN : 2744 - 2527 VALID ISSN Validator
Abstract The main goal of this research is to create a machine learning model for predicting user throughput in the mobile 4G network of the network provider M:tel Banja Luka, Bosnia and Herzegovina. The geographical area of the research is limited to the section of Motorway "9th January" (M9J) Banja Luka - Doboj, between the node Johovac and the town of Prnjavor (P-J section), and the area of the section of trunk road M17, between the node Johovac and the town of Doboj (J-D section). Based on the set of collected data, several models based on machine learning techniques were trained and tested together with the application of the Correlation-based Feature Selection (CFS) method to reduce the space of input variables. The test results showed that the models based on k-Nearest Neighbors (k-NN) have the lowest relative prediction error, for both sections, while the model created for the trunk road section has significantly better performance.
Article Basics


Article Title Basics
Details


Article ISSN Validity | VALID ISSN
Details


Article Basic Information
Details


Article Editorial Team Basics
Details


Article Archive and Articles Basics
Details




 

Basics

 

Contact and Support

 

For authors

 

Legal

Home

About

Evaluation

Contact Us

Linkedin

Facebook Twitter

Guide for authors

indexarticle

ISSN Checker

Terms & Conditions

Privacy Policy

ISBN CHECKER